Y3/4 Addition and subtraction Unit 2 (34174)

Additional teacher instructions for practice sheets

These notes indicate which practice sheets are most appropriate for which groups.

Day 1 Y3 Adding 3 or more numbers Sheet 1

Working towards ARE / Working at ARE

Day 1 Y3 and Y4 Adding 4 or more numbers Sheet 2

Y3 Greater Depth

Y4 Working towards ARE / Working at ARE

Day 1 Y4 Adding 5 or more numbers Sheet 3

Working towards ARE / Working at ARE / Greater Depth

Day 2 Y3 Multiples of 5: pairs to 100 Sheet 1

Working towards ARE

Give children a 100 bead string if needed.

Day 2 Y3 Matching pairs to 100 Sheet 2

Working at ARE / Greater Depth

Give children a sheet of 0-100 landmarked lines if needed.

Day 2 Y4 Pairs to 100 Sheet 3

Working towards ARE / Working at ARE / Greater Depth

Day 3 Y3 Change from £1 Sheet 1

Working towards ARE / Working at ARE / Greater Depth

Day 3 Y4 Subtracting from 100 Sheet 2

Working towards ARE / Working at ARE / Greater Depth

Working towards ARE can use 0 - 100 landmarked lines to help if needed.

Adding 3 or more numbers

Sheet 1

Add these numbers.

Remember to look for doubles, number bonds and place value additions.

$$6 + 5 + 4 =$$

Challenge

What four single-digit numbers could be added to make 10?

Adding 4 or more numbers

Sheet 2

Add these numbers.

Remember to look for **doubles**, **number bonds** and **place value** additions.

$$6 + 5 + 2 + 8 =$$

$$3+16+7+4=$$
 $2+9+7+5=$ $13+6+9+7=$

$$15 + 8 + 7 + 6 =$$

Challenge

What four numbers could be added to give a total of 14? No two numbers can be the same.

Adding 5 or more numbers

Sheet 3

Add these numbers.

Remember to look for doubles, number bonds and place value additions.

$$9+2+5+9+6=$$

$$3 + 12 + 12 + 6 + 20 + 7 =$$

Challenge

What five numbers could be added to give a total of 20? No two numbers can be the same.

Multiples of 5: pairs to 100

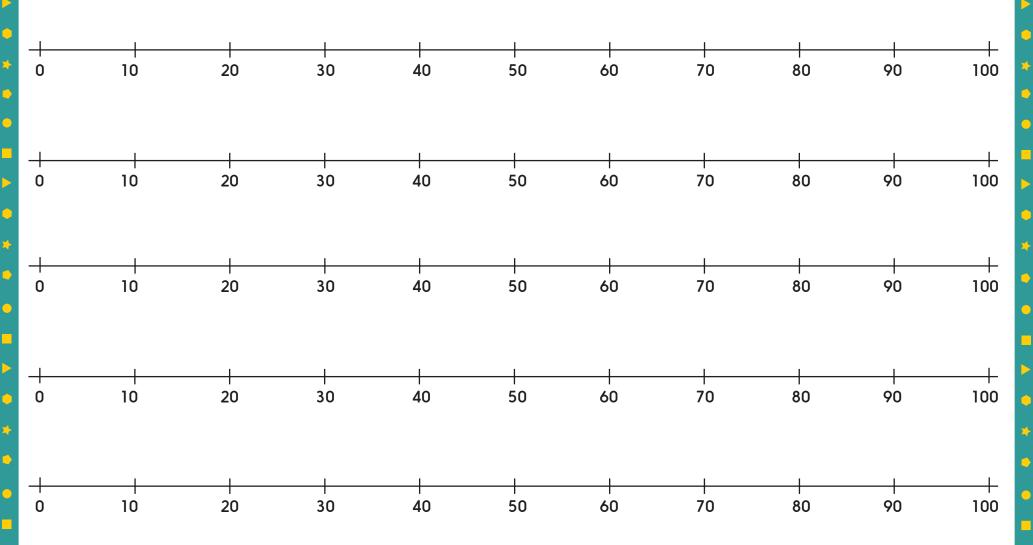
Sheet 1

Challenge

Find a pair of numbers which total 100 where the digits add to 19. Can you find another? And another? Explain your findings.

Matching pairs to 100

Sheet 2


Use the number lines to help find the 'complement' to 100.

Challenge

Hannah's jigsaw puzzle has 100 pieces. She has put together 73 pieces so far. How many more pieces are needed to complete the puzzle?

Sheet 2 continued

Pairs to 100

Sheet 3

Write in the missing digits to make each sum correct.

$$8() + 1() = 100$$

$$8 + 2 = 100$$

$$()5 + ()5 = 100$$

$$\bigcirc 1 + \bigcirc 9 = 100$$

$$8()+()5 = 100$$

$$6()+()3 = 100$$

Change from £1

Sheet 1

Find the change from £1 using Maths Frog to help you count up.

Cost of item	Workings										Change from £1	
68p	_ @@@@	00000000000000000000000000000000000000	88888888888888888888888888888888888888	30p	88888888	00000000000000000000000000000000000000	@@@@@@@@	@@@@@@@@	80p	888888888 8888	88888 f1	
99p	Ü	10p <u>888888888888</u>	- 1									
32p	Ó _ @@@®	10p @@@@@@@@ @	2Öp 888888888	3Óp 3 000000000000000000000000000000000000	4Óp 000000000000	5Óp 30000000000	60p 888888888	7Óp XARARARAR	80p 988888888 8	9Óp ®®®®®®®®®	f1	
24p	 @@@@@	10p 10p	20p 80000 8000 6	30p 30p	40p 8688888888	50p 300000000000	60p @@@@@@@@	70p 6000000000	80p ®®®®®®®®®®® ®	90p BBBBBBBBBB	f1 00000	
71p	_ @@@@	10p	20p 888888888 8	30p 00000000000	40p	50p	60p	70p	80p 20000000000	90p 888888888	f1 88888	
27p	0	10p 8000000000000	20p	30p	40p	50p	60p	70p	80p	90p 80000000000	f1	
13p	0	10p	20p	30p	1 40p	Г 50р	60p	70p	80p	90p	£1	
85p	Ó	10p	20p	3 0 p	4 0 p	5 0 p	6 0 p	7Óp	8Óp	9 0 p	£1	
46p	0	1 10p	20p	30p	1 40p	1 50p	60p	70p	80p	90p	£1	
50p	0	10p	20p	30p	1 40p	Г 50р	60p	70p	80p	90p	£1	
Joh	0	10p	20p	30p	40p	50p	60p	000000000 70p	80p	90 p	£1	

Challenge

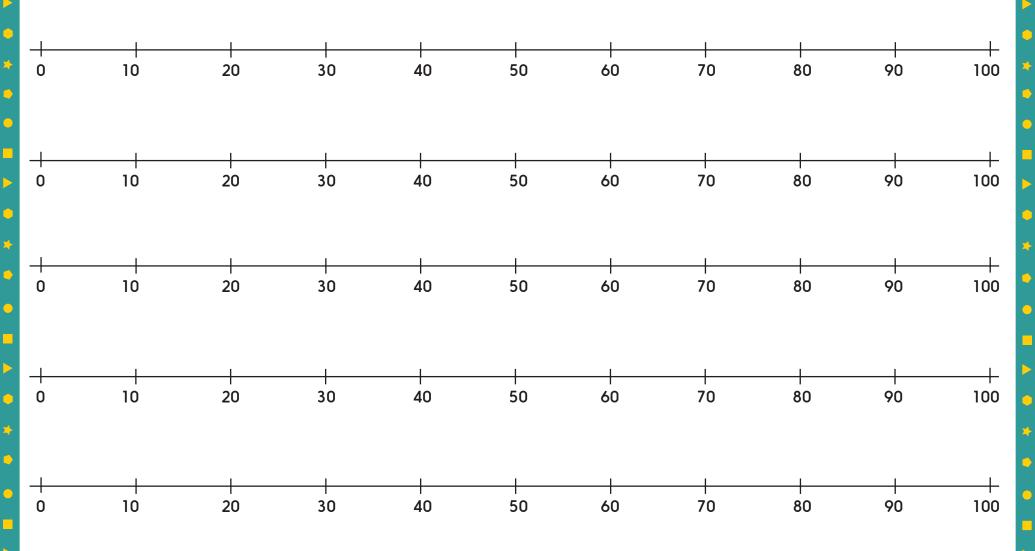
Which prices can be subtracted from £1 where the change given is more than three 10ps and two 2ps?

Subtracting from 100

Sheet 2

$$100 - 85 = ($$

Choose two subtractions. Write additions to match each one.


Challenge

Write in missing digits to make each subtraction correct.

Do any of these only have one possibility? Do any have more than one possibility?

Sheet 2 continued

Answers

Day 1 Y3 Adding 3 or more numbers Sheet 1

$$2+9+8=19$$
 $4+5+4=13$

$$4 + 8 + 8 = (20)$$

Challenge

Day 1 Y3 and Y4 Adding 4 or more numbers Sheet 2

$$7 + 5 + 3 + 6 = 21$$

$$7+5+3+6=$$
 (21) $2+14+8+6=$ (30) $6+15+7+6=$ (34) $9+8+3+4+1=$ (25)

21)
$$3+16+7+4=30$$
 $2+9+7+5=23$ $13+6+9+7=35$

Challenge

What four numbers could be added to give a total of 14? No two numbers can be the same.

Answers

Day 1 Y4 Adding 5 or more numbers Sheet 3

$$5 + 12 + 5 + 7 + 8 = 37$$

$$6 + 9 + 14 + 11 + 8 = 48$$

$$9+3+8+7+11+15=$$

$$1+2+3+4+5+6+7+8+9=45$$

$$9 + 2 + 5 + 9 + 6 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Challenge

What five numbers can be added to give a total of 20? No two numbers can be the same.

Accept any correct answer, e.g.

Day 2 Y3 Multiples of 5: pairs to 100 Sheet 1

$$45 + \boxed{55} = 100 \quad 25 + \boxed{75} = 100 \quad \boxed{85} + 15 = 100 \quad 100 = 75 + \boxed{25} \quad 55 + \boxed{45} = 10$$

$$95 + \boxed{5} = 100 \ \boxed{65} + 35 = 100 \ \boxed{65} + \boxed{35} = 100 \ \boxed{85} + \boxed{15} = 100 \ \boxed{100} = 5 + \boxed{95}$$

Challenge

The digits add to 19 because the Tens digits have to make 9 tens and the Ones digits need to total 10, and 9 + 10 = 19.

Day 2 Y3 Matching pairs to 100 Sheet 2

$$47 + \boxed{53} = 100$$
 $25 + \boxed{75} = 100$ $\boxed{72} + 28 = 100$ $100b = 12 + \boxed{88}$ $75 + \boxed{25} = 100$

Challenge

$$100 = 73 + 27$$

Hannah must fit 27 more pieces to complete the puzzle.

Answers

Day 2 Y4 Pairs to 100 Sheet 3

$$6^{5} + 3^{5} = 100$$

$$41 + 59 = 100$$

$$7(6) + (2)4 = 100$$

$$7(5) + 2(5) = 100$$

$$5(1)+(4)9 = 100$$

$$(5)8 + (4)2 = 100$$

$$8(5)+(1)5 = 100$$

$$(5)5 + (4)5 = 100$$

$$6(7)+(3)3 = 100$$

Day 3 Y3 Change from £1 Sheet

cost of item	change from £1				
68p	32p				
99p	1p				
32p	68p				
24p	76p				
71p	29p				
27p	73p				
13p	87p				
85p	15p				
46p	54p				
50p	50p				

Challenge

Which prices can be subtracted from £1 where the change given is more than three 10ps and two 2ps? Any amount up to and including 65p.

Answers

Day 3 Y4 Subtracting from 100 Sheet 2

$$100 - \left(69\right) = 31$$

$$100 - \left(58\right) = 42$$

$$100 - \boxed{37} = 63$$

$$100 - \boxed{51} = 49$$

Corresponding additions:

$$85 + 15 = 100$$

$$74 + 26 = 100$$

$$67 + 33 = 100$$

$$53 + 47 = 100$$

$$37 + 63 = 100$$

$$51 + 49 = 100$$

Challenge

Write in missing digits to make each subtraction correct.

e.g.
$$100 - 81 = 19$$

$$100 - 70 = 30$$