Mathematical investigation (1)

Investigating is a great way to learn to think mathematically, apply logic, spot patterns and improve our perseverance.

Playing with Fibonacci Sequences

1	1	2	3	5	$\boxed{8}$	13	21	34	55

800 years ago, a mathematician from Pisa in Italy wrote about a rather special sequence of numbers. We call it the Fibonacci Sequence.
These numbers turn out to be very special.

Draw a box around a group of 4 adjacent (next-door) numbers in the sequence. e.g.

$$
3,5,8,13
$$

You may use a calculator for the next bit if you want to, or you can do it yourself! Follow these instructions:

1. Multiply the 'outside' numbers in the group: $3 \times 13=39$
2. Multiply the 'inside' numbers in the group: 5×8 (which is 8 lots of 5) $=40$
3. Draw a box around another set of four numbers. Repeat instructions 1 and 2.

$$
1,2,3,5
$$

4. Draw five different boxes around groups of four numbers. Follow the same instructions each time.

What do you notice about the pairs of numbers?
© Hamilton Trust

1	1	2	3	5	13	21	34	55

1. Draw a box around three adjacent numbers, e.g. $3,5,8$
2. Multiply the 'outside' numbers: $3 \times 8=24$
3. Multiply the 'middle' number by itself: $5 \times 5=\mathbf{2 5}$
4. Repeat five times.

What do you notice about each pair of numbers?

Challenge!

Here, you need to know a bit about square numbers...
When we multiply numbers by themselves, they make squares. So, we call the answers square numbers.

Use each number in the Fibonacci sequence to give a sequence of square numbers:

Fibonacci numbers	1	1	2	3	5	8	13
Square numbers	$1 \times 1=$ 1	$1 \times 1=$ 1	$2 \times 2=$ 4	$3 \times 3=$ 9	$5 \times 5=$ 25	$8 \times 8=$ 64	$13 \times 13=$ 169

Add each pair of next-door numbers in this sequence: $1+1=2,1+4=5$, etc. Write down your answers, $2,5, \ldots$

What do you notice about this new sequence of numbers?
These Fibonacci numbers seem to be everywhere!

